lombscargle_scipy¶
-
lombscargle.implementations.
lombscargle_scipy
(t, y, frequency, normalization='normalized', center_data=True) [edit on github][source]¶ Lomb-Scargle Periodogram
This is a wrapper of
scipy.signal.lombscargle
for computation of the Lomb-Scargle periodogram. This is a relatively fast version of the naive O[N^2] algorithm, but cannot handle heteroskedastic errors.Parameters: t, y: array_like
times, values, and errors of the data points. These should be broadcastable to the same shape.
frequency : array_like
frequencies (not angular frequencies) at which to calculate periodogram
normalization : string (optional, default=’normalized’)
Normalization to use for the periodogram TODO: figure out what options to use
center_data : bool (optional, default=True)
if True, pre-center the data by subtracting the weighted mean of the input data.
Returns: power : array_like
Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization.
References
[R11] - Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
[R12] - Press et al, Numerical Recipies in C (2002)
[R13] Scargle, J.D. 1982, ApJ 263:835-853