lombscargle_fastchi2¶
-
lombscargle.implementations.
lombscargle_fastchi2
(t, y, dy, f0, df, Nf, normalization='normalized', fit_bias=True, center_data=True, nterms=1, use_fft=True, trig_sum_kwds=None) [edit on github][source]¶ Lomb-Scargle Periodogram
This implements a fast chi-squared periodogram using the algorithm outlined in [R10]. The result is identical to the stantard Lomb-Scargle periodogram. The advantage of this algorithm is the ability to compute multiterm periodograms relatively quickly.
Parameters: t, y, dy : array_like
times, values, and errors of the data points. These should be broadcastable to the same shape.
f0, df, Nf : (float, float, int)
parameters describing the frequency grid, f = f0 + df * arange(Nf).
normalization : string (optional, default=’normalized’)
Normalization to use for the periodogram TODO: figure out what options to use
fit_bias : bool (optional, default=True)
if True, include a constant offet as part of the model at each frequency. This can lead to more accurate results, especially in then case of incomplete phase coverage.
center_data : bool (optional, default=True)
if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if
fit_bias = False
nterms : int (optional, default=1)
Number of Fourier terms in the fit
Returns: power : array_like
Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization.
References
[R7] - Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
[R8] - Press et al, Numerical Recipies in C (2002)
[R9] Scargle, J.D. ApJ 263:835-853 (1982) [R10] (1, 2) Palmer, J. ApJ 695:496-502 (2009)