lombscargle_slow¶
-
lombscargle.implementations.
lombscargle_slow
(t, y, dy, frequency, normalization='normalized', fit_bias=True, center_data=True) [edit on github][source]¶ Lomb-Scargle Periodogram
This is a pure-python implemnetation of the original Lomb-Scargle formalism.
Parameters: t, y, dy : array_like
times, values, and errors of the data points. These should be broadcastable to the same shape.
frequency : array_like
frequencies (not angular frequencies) at which to calculate periodogram
normalization : string (optional, default=’normalized’)
Normalization to use for the periodogram TODO: figure out what options to use
fit_bias : bool (optional, default=True)
if True, include a constant offet as part of the model at each frequency. This can lead to more accurate results, especially in then case of incomplete phase coverage.
center_data : bool (optional, default=True)
if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if
fit_bias = False
Returns: power : array_like
Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization.
References
[R14] - Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
[R15] - Press et al, Numerical Recipies in C (2002)
[R16] Scargle, J.D. 1982, ApJ 263:835-853