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ABSTRACT

This paper introduces the multiband periodogram, a general extension of the well-known Lomb-
Scargle approach for detecting periodic signals in time-domain data. In addition to advantages of
the Lomb-Scargle method such as treatment of non-uniform sampling and heteroscedastic errors, the
multiband periodogram significantly improves period finding for randomly sampled multiband light
curves (e.g., Pan-STARRS, DES and LSST). The light curves in each band are modeled as arbitrary
truncated Fourier series, with the period and phase shared across all bands. The key aspect is the
use of Tikhonov regularization which drives most of the variability into the so-called base model
common to all bands, while fits for individual bands describe residuals relative to the base model
and typically require lower-order Fourier series. This decrease in the effective model complexity is
the main reason for improved performance. After a pedagogical development of the formalism of
least-squares spectral analysis which motivates the essential features of the multiband model, we use
simulated light curves and randomly subsampled SDSS Stripe 82 data to demonstrate the superiority
of this method compared to other methods from the literature, and find that this method will be able
to efficiently determine the correct period in the majority of LSST’s bright RR Lyrae stars with as
little as six months of LSST data, a vast improvement over the years of data reported to be required
by previous studies. A Python implementation of this method, along with code to fully reproduce the
results reported here, is available on GitHub.

Subject headings: methods: data analysis — methods: statistical

1. INTRODUCTION

Many types of variable stars show periodic flux vari-
ability (Eyer & Mowlavi 2008). Periodic variable stars
are important both for testing models of stellar evolu-
tion and for using such stars as distance indicators (e.g.,
Cepheids and RR Lyrae stars). One of the first and
main goals of the analysis is to detect variability and
to estimate the period and its uncertainty. A number of
parametric and non-parametric methods have been pro-
posed to estimate the period of an astronomical time
series (e.g., Graham et al. 2013, and references therein).

The most popular non-parametric method is the phase
dispersion minimization (PDM) introduced by Stelling-
werf (1978). Dispersion per bin is computed for binned
phased light curves evaluated for a grid of trial periods.
The best period minimizes the dispersion per bin. A sim-
ilar and related non-parametric method that has been re-
cently gaining popularity is the Supersmoother routine
(Reimann 1994). It uses a running mean or running lin-
ear regression on the data to fit the observations as a
function of phase to a range of periods. The best period
minimizes a figure-of-merit, adopted as weighted sum of
absolute residuals around the running mean. Neither the
Supersmoother algorithm nor the PDM method require
a priori knowledge of the light curve shape.

The most popular parametric method is the Lomb-
Scargle periodogram, which is discussed in detail in Sec-
tion 2. The Lomb-Scargle periodogram is related to the
χ2 for a least-square fit of a single sinusoid to data and
can treat non-uniformly sampled time series with het-
eroscedastic measurement uncertainties. The underly-
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ing model of the LombScargle periodogram is nonlinear
in frequency and so the likelihood surface in frequency
is non-convex. This non-convexity is readily apparent
in the many local maxima of the typical periodogram,
which makes it difficult to find the maximum via stan-
dard numerical optimization routines. Thus in practice
the global maximum of the periodogram is often found
by a brute-force grid search (for details see, e.g. Ivezić
et al. 2014).

A more general parametric method based on the
use of continuous-time autoregressive moving average
(CARMA) model was recently introduced by Kelly et al.
(2014). CARMA models can also treat non-uniformly
sampled time series with heteroscedastic measurement
uncertainties, and can handle complex variability pat-
terns.

A weakness of all these standard methods is that
they require homogeneous measurements – for astron-
omy data, this means that successive measurements must
be taken through a single photometric bandpass (filter).
This has not been a major problem for past surveys be-
cause measurements are generally taken through a single
photometric filter (e.g. LINEAR, Sesar et al. 2011), or
nearly-simultaneously in all bands at each observation
(e.g. SDSS, Sesar et al. 2010). For the case of simul-
taneously taken multiband measurements, Süveges et al.
(2012) utilized the principal component method to op-
timally extract the best period. Their method is essen-
tially a multiband generalization of the well-known two-
band Welch-Stetson variability index (Welch & Stetson
1993). Unfortunately, when data in each band are taken
at different times, such an approach in not applicable. In
such cases, past studies have generally relied on ad hoc
methods such as a majority vote among multiple single-
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band estimates of the periodogram (e.g., Oluseyi et al.
2012).

For surveys that obtain multiband data one band at a
time, such as Pan-STARRS (Kaiser et al. 2010) and DES
(Flaugher 2008), and for future multicolor surveys such
as LSST (Ivezić et al. 2008), this ad hoc approach is not
optimal. In order to take advantage of the full informa-
tion content in available data, it would be desirable to
have a single estimate of the periodogram which accounts
for all observed data in a manner independent of assump-
tions about the underlying spectrum of the object. We
propose such a method in this paper.

The proposed method is essentially a generalization of
the Lomb-Scargle method to multiband case. The light
curves in each band are modeled as arbitrary truncated
Fourier series, with the period, and optionally the phase,
shared across all bands. The key aspect enabling this ap-
proach is the use of Tikhonov regularization (discussed in
detail in Section 4.3) which drives most of the variabil-
ity into the so-called base model common to all bands,
while fits for individual bands describe residuals rela-
tive to the base model and typically require lower-order
Fourier series. This regularization-driven decrease in ef-
fective model complexity is the main reason for improved
performance.

The remainder of the paper is organized as follows.
Sections 2-4 offer a review of essential concepts in least
squares modeling and least squares spectral analysis,
as well as their relationship to common periodogram
estimates: in Section 2 we provide a brief review of
least-squares periodic fitting, and in Section 3 derive
the matrix-based formalism for single-band least squares
spectral analysis used through the rest of this work.
Section 4 introduces several extensions and generaliza-
tions to the single-band model that the matrix formalism
makes possible, including floating mean models, trun-
cated Fourier models, and regularized models. Sec-
tions 5-7 present our new developments: in Section 5,
we use the ideas and formalism of Sections 2-4 to moti-
vate the multiband periodogram, and show some exam-
ples of its use on simulated data. In Section 6 we apply
this method to measurements of 483 RR Lyrae stars first
explored by Sesar et al. (2010, hereafter S10), and in Sec-
tion 7 explore the performance of the method for simu-
lated observations from the LSST survey. We conclude
in Section 8.

2. BRIEF OVERVIEW OF PERIODIC ANALYSIS

The detection and quantification of periodicity in time-
varying signals is an important area of data analysis
within modern time-domain astronomical surveys. For
evenly-spaced data, the periodogram, a term coined by
Schuster (1898), gives a quantitative measure of the
periodicity of data as a function of the angular fre-
quency ω. For data {yk}Nk=1 measured at equal intervals
tk = t0 + k∆t, Schuster’s periodogram, which measures
the spectral power as a function of the angular frequency,
is given by

C(ω) =
1

N

∣∣∣∣∣
N∑
k=1

yke
iωtk

∣∣∣∣∣
2

, (1)

and can be computed very efficiently using the Fast
Fourier Transform.

Because astronomical observing cadences are rarely so
uniform, many have looked at extending the ideas be-
hind the periodogram to work with unevenly-sampled
data. Most famously, Lomb (1976) and Scargle (1982)
extended earlier work to define the normalized peri-
odogram:

PN (ω) =
1

2Vy

[
[
∑

k(yk−ȳ) cosω(tk−τ)]
2∑

k cos2 ω(tk−τ) +

[
∑

k(yk−ȳ) sinω(tk−τ)]
2∑

k sin2 ω(tk−τ)

]
, (2)

where ȳ is the mean and Vy is the variance of the data
{yk}, and τ is the time-offset which orthogonalizes the
model and makes PN (ω) independent of a translation
in t (see Press et al. 2007, for an in-depth discussion).
Lomb (1976) showed that this time-offset has a deeper
effect: namely, it gives PN a similar form to previous
extensions of C(ω), while leaving PN identical to the
estimate of harmonic content given a least-squares fit to
a single-component sinusoidal model,

d(t) = A sin(ωt+ φ). (3)

This long-recognized connection between spectral power
and least squares fitting methods was solidified by Jaynes
(1987), who demonstrated that the least-squares peri-
odogram method is a sufficient statistic for inferences
about a stationary-frequency signal in the presence of
Gaussian noise. Building on this result, Bretthorst
(1988) explored the extension of these methods to more
complicated models with multiple frequency terms, non-
stationary frequencies, and other more sophisticated
models within a Bayesian framework.

While the important features of least squares frequency
estimation via Lomb-Scargle periodograms have been
discussed elsewhere, we will present a brief introduction
to the subject in the following section. In particular, we
re-express the problem in a matrix-based formalism that
makes clear how the basic approach motivated by Lomb
(1976), Scargle (1982), and others can be extended to
more sophisticated models, including the multiband pe-
riodogram proposed in this work.

3. STANDARD LEAST SQUARES SPECTRAL FITTING

In this section we present a brief quantitative intro-
duction to the least squares fitting formulation of the
normalized periodogram of Equation (2). We denote N
observed data points as

D = {tk, yk, σk}Nk=1 (4)

where tk is the time of observation, yk is the observed
value (typically a magnitude), and σk describes the
Gaussian errors on each value. For notational simplic-
ity we will assume without loss of generality that the
data yk are centered such that the measurements within
each band satisfy ∑

k wkyk∑
k wk

= 0 (5)

where the weights are wk = σ−2
k . Though this assump-

tion is essential to the simpler models presented in this
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section, it will become superfluous with the floating-
mean models described in later sections.

3.1. Stationary Sinusoid Model

The normalized periodogram of Equation (2) can be
derived from the normalized χ2 of the best-fit single-term
stationary sinusoidal model given in Equation (3). To
make the problem linear, we can re-express the model
in terms of the parameter vector θ = [A cosφ,A sinφ] so
that our model is

y(t|ω, θ) = θ1 sin(ωt) + θ2 cos(ωt). (6)

For a given ω, the maximum likelihood estimate of the
parameters θ can be found by minimizing the χ2 of the
model, which is given by

χ2(ω) =
∑
k

[yk − y(tk|ω, θ)]2

σ2
k

. (7)

For the single-term Fourier model, it can be shown (see,
e.g. Ivezić et al. 2014) that

χ2
min(ω) = χ2

0[1− PN (ω)] (8)

where PN (ω) is the normalized periodogram given in
Equation (2)3 and χ2

0 is the reference χ2 for a constant
model, which due to the assumption in Equation (5) is
simply χ2

0 =
∑
k(yk/σk)2.

3.2. Matrix Formalism

A standard way of compactly expressing least squares
models is via matrix expressions (See e.g. Brandt 1970).
Likewise, the expressions related to the stationary sinu-
soid model can be expressed more compactly by defining
the following matrices:

Xω =


sin(ωt1) cos(ωt1)
sin(ωt2) cos(ωt2)

...
...

sin(ωtN ) cos(ωtN )

 ;

y =


y1

y2
...
yN

 ; Σ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · ·σ2

N

 (9)

With these definitions, the model in Equation (6) can be
expressed as a simple linear product, y(t|ω, θ) = Xωθ,
and the model and reference χ2 can be written

χ2(ω) = (y −Xωθ)
TΣ−1(y −Xωθ) (10)

χ2
0 = yTΣ−1y (11)

The expression for the normalized periodogram can be
computed by finding via standard methods the value of

3 An important feature of the Lomb-Scargle approach is the mod-
ification of the model with the time-offset τ tuned to orthogonalize
the harmonic basis across the irregular times {ti}. This orthogo-
nalization cancels cross-terms in the expression of χ2, greatly re-
ducing the complexity of computing PN . As discussed in footnote
4, however, this orthogonalization does not change the resulting
periodogram and so it can safely be ignored for the purposes of
this work.

θ which minimizes χ2(ω), and plugging the result into
Equation (8). This yields

PN (ω) =
yTΣ−1Xω [XT

ω Σ−1Xω]−1 XT
ω Σ−1y

yTΣ−1y
. (12)

We note that Equation (12) is equivalent to Equation (2)
in the homoscedastic case with Σ ∝ VyI. 4

3.3. Simple Single-band Period Finding

As an example of the standard periodogram in ac-
tion, we perform a simple single-band harmonic analysis
of simulated r-band observations of an RR Lyrae light
curve, based on empirical templates derived in S10 (Fig-
ure 1). The observations are of a star with a period of
0.622 days, and take place on 60 random nights over a
6-month period, as seen in the left panel.

The upper-right panel shows the normalized peri-
odogram for this source as a function of period. While
the power does peak at the true period of 0.622 days, an
aliasing effect is readily apparent near P = 0.38. This
additional peak is due to beat frequency between the true
period P and the observing cadence of∼ 1 day. This beat
frequency is the first in a large sequence: for nightly ob-
servations, we’d expect to find excess power at periods
Pn = P/(1 + nP ) days, for any integer n. The strong
alias in Figure 1 corresponds to the n = 1 beat period
Pn = 0.383. Though it is possible to carefully correct for
such aliasing by iteratively removing contributions from
the estimated window function (e.g. Roberts et al. 1987),
we’ll ignore this detail in the current work.

The lower-right panel of Figure 1 shows the maximum
likelihood interpretation of this periodogram: it is a mea-
sure of the normalized χ2 for a single-term sinusoidal
model. Here we visualize the data from the left panel,
but folded as a function of phase, and overplotted with
the best-fit single-term model. This visualization makes
it apparent that the single-term model is highly biased:
RR Lyrae light curves are, in general, much more com-
plicated than a simple sinusoid. Nevertheless, the sim-
plistic sinusoidal model is able to recover the correct fre-
quency to a high degree of accuracy (roughly related to
the width of the peak) and significance (roughly related
to the height of the peak; see Scargle (1982) for details).
For a more complete introduction to and discussion of the
single-term normalized periodogram, refer to, e.g. Bret-
thorst (1988) or Ivezić et al. (2014).

4. GENERALIZING THE PERIODOGRAM MODEL

We have shown two forms of the classic normalized
periodogram: Equation (2) and Equation (12). Though
the two expressions are equivalent, they differ in their
utility. Because the expression in Equation (2) avoids
the explicit construction of a matrix, it can be computed
very efficiently. Furthermore, through clever use of the

4 For direct comparison to the Lomb-Scargle approach, we need
the equivalent of the τ parameter which orthogonalizes the basis
across the observed times {ti}. Such an orthogonalization is ac-
complished via the transformations Xω → XωVω and θ → V T

ω θ,
where Vω is the orthogonal matrix of eigenvectors of the covariance
XT

ω Σ−1Xω . The Vω terms straightforwardly cancel out of Equa-
tions (10)-(12) and the results of this section are unchanged. The
general matrix formalism used here makes clear that this result
applies to all the periodogram extensions mentioned in this work.
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Fig. 1.— An illustration of the basic periodogram and its relationship to the single-term sinusoid model. The left panel shows the input
data, while the right panels show the fit derived from the data. The upper-right panel shows the periodogram with a clear peak at the
true period of 0.622 days, and the bottom-right panel shows the data as a function of the phase associated with this period. Note in
the periodogram the presence of the typical aliasing effect, with power located at beat frequencies between the true period and the 1-day
observing cadence (see Section 3.3 for further discussion).

Fast Fourier Transform, expressions of the form of Equa-
tion (2) can be evaluated exactly for N frequencies in
O[logN ] time (Press & Rybicki 1989).

The matrix-based formulation of Equation (12),
though slower than the Fourier-derived formulation, is
a more general expression and allows several advantages:

1. It is straightforwardly extended to heteroscedastic
and/or correlated measurement noise in the data
yk through appropriate modification of the noise
covariance matrix Σ.

2. It is straightforwardly extended to more sophisti-
cated linear models by appropriately modifying the
design matrix Xω.

3. It is straightforwardly extended to include
Tikhonov/L2-regularization terms (see Section 4.3
for more details) by adding an appropriate diagonal
term to the normal matrix XT

ω Σ−1Xω.

In the remainder of this section, we will explore a few of
these modifications and how they affect the periodogram
and resulting model fits.

4.1. Stationary Sinusoid with Floating Mean

As an example of one of these generalizations, we’ll
consider what has variously been called the Date-
compensated Discrete Fourier Transform (Ferraz-Mello
1981), the floating-mean periodogram (Cumming et al.
1999), and the generalized Lomb-Scargle method (Zech-
meister & Kürster 2009). Here we use the term floating-
mean periodogram. This method adjusts the classic nor-
malized periodogram by fitting the mean of the model
alongside the amplitudes:

y(t | ω, θ) = θ0 + θ1 sinωt+ θ2 cosωt (13)

The periodogram derived from this model can be more
accurate than the standard Phys. Rev. E-centered pe-
riodogram for certain observing cadences and selection

functions, and espeically when searching for long-period
varaibility or working with very few samples (Cumming
et al. 1999). Zechmeister & Kürster (2009) detail the
required modifications to the orthogonalized harmonic
formalism of Equation (2) to allow the mean to float in
the model. In the matrix formalism, the modification
is much more straightforward: all that is required is to
add a column of ones to the Xω matrix before comput-
ing the power via Equation (12). This column of ones
corresponds to a third entry in the parameter vector θ,
and acts as a uniform constant offset for all data points.

For well-sampled data, there is usually very little dif-
ference between a standard periodogram on pre-centered
data and a floating-mean periodogram. Where this dif-
ference becomes important is if selection effects or ob-
serving cadences cause there to be preferentially more
observations at certain phases of the light curve: a toy ex-
ample demonstrating this situation is shown in Figure 2.
The data are drawn from a sinusoid with Gaussian errors,
and data with a magnitude fainter than 16 are removed
to simulate an observational bias (left panel). Because of
this observational bias, the mean of the observed data is
a poor predictor of the true mean, causing the standard
method to poorly fit the data and miss the input period
(upper-right panel). The floating-mean approach is able
to automatically adjust for this bias, resulting in a peri-
odogram which readily detects the input period of 0.622
days (lower-right panel).

4.2. Truncated Fourier Models

As mentioned above, the standard periodogram is
equivalent to fitting a single-term stationary sinusoidal
model to the data. A natural extension is to instead
use a multiple-term sinusoidal model, with frequencies
at integer multiples of the fundamental frequency (See
e.g. Bretthorst 1988). With N Fourier terms, there are
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Fig. 2.— An illustration of the effect of the floating mean model for censored data. The data consist of 80 observations drawn from a
sinusoidal model. To mimic a potentially damaging selection effect, all observations with magnitude fainter than 16 are removed (indicated
by the light-gray points). The standard and floating-mean periodograms are computed from the remaining data; these fits are shown over
the data in the left panel. Because of this biased observing pattern, the mean of the observed data is a biased estimator of the true mean.
The standard fixed-mean model in this case fails to recover the true period of 0.622 days, while the floating mean model still finds the
correct period.
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Fig. 3.— The model fits and periodograms for several truncated Fourier models. The data are the same as those in Figure 1. Note that
in addition to the previously-seen 0.38-day alias, the higher-order models will generally show periodogram peaks at multiples of the true
fundamental frequency P0: this is because for integer n less than the number of Fourier terms in the model, P0 is a higher harmonic of the
model at P = nP0. Additionally, the increased degrees of freedom in the higher-order models let them fit better at any frequency, which
drives up the “background” level in the periodogram.

2N + 1 free parameters, and the model is given by

y(t|ω, θ) = θ0 +

N∑
n=1

[θ2n−1 sin(nωt) + θ2n cos(nωt)] .

(14)
Because this model remains linear in the parameters θ, it
can be easily accommodated into the matrix formalism of
Section 3.2. For example, an N = 2-term floating-mean
model can be constructed by building a design matrix

Xω with 2N + 1 = 5 columns:

X(2)
ω =


1 sin(ωt1) cos(ωt1) sin(2ωt1) cos(2ωt1)
1 sin(ωt2) cos(ωt2) sin(2ωt2) cos(2ωt2)
1 sin(ωt3) cos(ωt3) sin(2ωt3) cos(2ωt3)
...

...
...

...
...

1 sin(ωtN ) cos(ωtN ) sin(2ωtN ) cos(2ωtN )


(15)

Computing the power via Equation (12) using X
(2)
ω will

give the two-term periodogram. For larger N , more
columns are added, but the periodogram can be com-
puted in the same manner. Figure 3 shows a few ex-
amples of this multiterm Fourier approach as applied to



6

the simulated RR Lyrae light curve from Figure 1, and
illustrates several important insights into the subtleties
of this type of multiterm fit.

First, we see in the right panel that all three models
show a clear signal at the true period of P0 = 0.622 days.
The higher-order models, however, also show a a spike in
power at P1 = 2P0: the reason for this is that for and
N > 1-term model, the period P0 is the first harmonic of
a model with fundamental frequency 2P0, and the higher-
order models contain the single-period result.

Second, notice that as the number of terms is increased,
the general “background” level of the periodogram in-
creases. This is due to the fact that the periodogram
power is inversely related to the χ2 of the fit at each fre-
quency. A more flexible higher-order model can better
fit the data at all periods, not just the true period. Thus
in general the observed power of a higher-order Fourier
model will be everywhere higher than the power of a
lower-order Fourier model.

One might hope that when adding terms, the correct-
period model would show more of an improvement than
the incorrect-period model (and thus the periodogram
maximum would become more pronounced in compari-
son to the background), but this does not generally hold.
Consider that in the extreme limit in which the number
model parameters is equal to the number of data points,
the model has enough flexibility to fit the data perfectly
at every frequency, and the resulting periodogram would
be everywhere unity! This can only be the case if, on
average, addition of terms preferentially boosts the back-
ground level.

4.3. Regularized Models

The previous sections raise the question: how compli-
cated a model should we use? We have seen that as we
add more terms to the fit, the model will more closely
describe the observed data. For very high-order models,
however, such a close fit over-fits the data: that is, the fit
is more responsive to statistical noise in the observations
than to the underlying signal. This can be addressed by
explicitly truncating the series at some number of terms,
but we can also use a regularization term to mathemati-
cally enforce model simplicity.

A regularization term is an explicit penalty on the mag-
nitude of the model parameters θ, and can take a num-
ber of forms. For computational simplicity here we’ll use
an L2 regularization – also known as Tikhonov Regular-
ization (Tikhonov 1963) or Ridge Regression (Hoerl &
Kennard 1970) – which is a quadratic penalty term in
the model parameters added to the χ2. Mathematically,
this is equivalent in the Bayesian framework to using a
zero-mean Gaussian prior on the model parameters.

We encode our regularization in the matrix Λ =
diag([λ1, λ2 · · ·λM ]) for a model with M parameters, and
construct a “regularized” χ2:

χ2
Λ(ω) = (y −Xωθ)

TΣ−1(y −Xωθ) + θTΛθ (16)

Minimizing this regularized χ2, solving for θ, and plug-
ging into the expression for PN gives us the regularized

counterpart of Equation (12):

PN,Λ(ω) =
yTΣ−1Xω [XT

ω Σ−1Xω + Λ]−1 XT
ω Σ−1y

yTΣ−1y
.

(17)
Notice that the effect of this regularization term is to
add a diagonal penalty to the normal matrix XT

ω Σ−1Xω,
which has the additional feature that it can correct ill-
posed models where the normal matrix is non-invertible.
This feature of the regularization will become important
for the multiband models discussed below.

In Figure 4, we compare a regularized and unregular-
ized 20-term truncated Fourier model on our simulated
RR Lyrae light curve. We use λ = 0 on the offset term,
and make the penalty λj progressively larger for each
harmonic component. The regularization prevents over-
fitting (left panel), and results in more prominent peri-
odogram peaks (right panel).

5. A MULTIPLE-BAND MODEL

In this section we will combine the ideas of the previous
sections to construct the multiband periodogram which
flexibly accounts for heterogeneous sources of data for a
single object. To start with, we might consider one of
two näıve approaches to the multi-band problem:

First, we might ignore band labels entirely and simply
compute a single standard Lomb-Scargle periodogram
over the full dataset. This amounts to the assumption
that one global model suitably fits each band, and in
practice will perform poorly due to the astrophysical
variability between bands: in other words, the model is
too simple and under-fits the data.

Second, we might treat each band entirely indepen-
dently and compute a standard Lomb-Scargle peri-
odogram on each, and use the additivity of χ2 along
with Equation (8) to construct a multiband periodogram.
This amounts to the assumption that the bands have
completely independent phases and amplitudes, and has
too many free parameters to be useful in most cases of
interest. In other words, the model is too complex and
over-fits the data (see Section 5.1 for further discussion).

To compute a periodogram which strikes a balance be-
tween these two extremes, we will take advantage of the
easy extensibility of the matrix formalism which led to
our generalizations above. The multiband model pre-
sented here contains the following features:

1. An Nbase-term truncated Fourier “base model”
which models the shared variability among all K
observed bands.

2. A set of Nband-term truncated Fourier fits, each
of which models the residual within a single band
from the shared variability accounted for in the
base model.

The total number of parameters for K bands is then
MK = (2Nbase + 1) + K(2Nband + 1). As a result, for
each band k we have the following model of the observed
magnitudes:

yk(t|ω, θ) = θ0 +
∑Nbase

n=1 [θ2n−1 sin(nωt) + θ2n cos(nωt)] +

θ
(k)
0 +

∑Nband

n=1

[
θ

(k)
2n−1 sin(nωt) + θ

(k)
2n cos(nωt)

]
. (18)
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Fig. 4.— The effect of regularization on a high-order model. The data is the same as those in Figure 1. We fit a 20-term truncated
Fourier model to the data, with and without a regularization term. Without regularization, the model oscillates widely to fit the noise
in the data. The regularization term effectively damps the higher-order Fourier modes and removes this oscillating behavior, leading to a
more robust model with stronger periodogram peaks.

The important feature of this model is that all bands
share the same base parameters θ, while their offsets θ(k)

are determined individually. Note the potential for con-
fusion: Nband here is not the number of observed bands,
but the number of Fourier components fit to the residuals
in each of the K observed bands.

We can construct the normalized periodogram for this
model by building a sparse design matrix with MK

columns. Each row corresponds to a single observation
through a single band. Columns corresponding to the
base model and the matching observation band will have
nonzero entries; all other columns will be filled with ze-
ros. For example, the (Nbase, Nband) = (1, 0) model cor-
responds to one with a simple single-term periodic base
frequency, and an independent constant offset term in
each band. The associated design matrix depends on the
particular data, but will look similar to this:

X(1,0)
ω =


1 sin(ωt1) cos(ωt1) 1 0 0 0 0
1 sin(ωt2) cos(ωt2) 0 0 0 0 1
1 sin(ωt3) cos(ωt3) 0 0 0 1 0
...

...
...

...
1 sin(ωtN ) cos(ωtN ) 0 0 1 0 0

 (19)

Here the nonzero entries of the final five columns are
binary flags indicating the (u, g, r, i, z)-band of the given
observation: for this example, the first row is a u-band
measurement, the second is a z-band, the third is a i-
band, etc., as indicated by the position of the nonzero
matrix element within the row.

On examination of the above matrix, it’s clear that
the columns are not linearly independent (i.e. Xω is low-
rank), and thus the parameters of the best-fit model will
be degenerate. Intuitively, this is due to the fact that if
we add an overall offset to the base model, this can be
perfectly accounted for by subtracting that same offset
from each residual model. Mathematically, the result of
this is that the normal matrix XT

ω Σ−1Xω will be non-
invertible, and thus the periodogram is ill-defined. In
order to proceed, then, we’ll either have to use a different

model, or use a cleverly-constructed regularization term
on one of the offending parameters.

We’ll choose the latter here, and regularize all the band
columns while leaving the base columns un-regularized:
for the above Xω matrix, this regularization will look like

Λ(1,0) = diag([0, 0, 0, λ, λ, λ, λ, λ]) (20)

where λ controls the degree of regularization. As λ grows
large, the model will preferentially push power into the
base terms, while minimizing the deviations of the model
for each individual band.

Here we will choose λ to be some small fraction of the
trace of the normal matrix [XT

ω Σ−1Xω]. This choice en-
sures the multiband periodogram is well-defined, while
maintaining the flexibility of the model in accounting
for independent band-to-band variation. With this reg-
ularization in place, the model is well-posed and Equa-
tion (17) can be used to straightforwardly compute the
power. The effective number of free parameters for
such a regularized (Nbase, Nband) model with K filters

is Meff
K = 2Neff

base + K(2Nband + 1) where Neff
base =

max(0, Nbase − Nband) is the effective number of base
terms.

The final remaining piece to mention is our assump-
tion in Equation (5) that the data are centered. This
is required so that the simple form of the reference χ2

0
remains valid. For the multiband model, this assump-
tion requires that the data satisfy Equation (5) within
each band: equivalently, we could lift this assumption
and compute the reference χ2

0 of the multiband model
with an independent floating mean within each band;
the results will be identical.

This multiband approach, then, actually comprises a
set of models indexed by their value of Nbase and Nband.
The most fundamental models have (Nbase, Nband) =
(1, 0) and (0, 1), which we’ll call the shared-phase and
multi-phase models respectively. In the shared-phase
model, all variability is assumed to be shared between
the bands, with only the fixed offset between them al-
lowed to float. In the multi-phase model, each band has
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independent variability around a shared fixed offset.

5.1. Relationship of Multiband and Single-band
approaches

With this formalism in place, we can return briefly to
the näıve models discussed at the beginning of Section 5.
The first, which ignores band information, is simply
a standard Lomb-Scargle over the heterogeneous data.
The second, in which each band is fit independently,
turns out to be equivalent to the (Nbase, Nband) = (0, 1)
model defined above. Here the base model is a simple
global offset which is degenerate with the offsets in each
band, so that the design matrix Xω can be straightfor-
wardly rearranged as block-diagonal. A block-diagonal
design matrix in a linear model indicates that compo-
nents of the model are being solved independently: here
these independent components amount to the single-
band floating-mean model from Section 4.1, fit indepen-
dently for each of the K bands.

For band k, we’ll denote the single-band floating-mean
periodogram as

P
(k)
N (ω) = 1−

χ2
min,k(ω)

χ2
0,k

(21)

The full multiband periodogram is given by

P
(0,1)
N (ω) = 1−

∑K
k=1 χ

2
min,k(ω)∑K

k=1 χ
2
0,k

(22)

and it can be shown straightforwaredly that P
(0,1)
N can

be constructed as a weighted sum of P
(k)
N :

P
(0,1)
N (ω) =

∑K
k=1 χ

2
0,kP

(k)
N∑K

k=1 χ
2
0,k

. (23)

Thus the (Nbase, Nband) = (0, 1) multiband periodogram
is identical to a weighted sum of standard periodograms
in each band, where the weights χ2

0,k are a reflection of
both the number of measurements in each band and how
much those measurements deviate from a simple constant
reference model.

5.2. Multiband Periodogram for Simulated Data

Before applying the multiband method to real data,
we will here explore its effectiveness on a simulated RR
Lyrae lightcurve. The upper panels of Figure 5 show a
multiband version of the simulated RR Lyrae light curve
from Figure 1. The upper-left panel shows 60 nights
of observations spread over a 6-month period, and for
each night all five bands (u,g,r,i,z) are recorded. Us-
ing the typical approach from the literature, we indi-
vidually compute the standard normalized periodogram
within each band: the results are shown in the upper-
right panel. The data are well-enough sampled that a dis-
tinct period of 0.622 days can be recognized within each
individual band, up to the aliasing effect discussed in
Section 3.3. Previous studies have made use of the infor-
mation in multiple bands to choose between aliases and
estimate uncertainties in determined periods (e.g. Sesar
et al. 2010; Oluseyi et al. 2012). While this approach is
sufficient for well-sampled data, it becomes problematic
when the multiband data are sparsely sampled.

The lower panels of Figure 5 show the same 60 nights of
data, except with only a single band observation recorded
each night. The lower-left panel shows the observa-
tions as a function of phase, and the lower-right pan-
els show the periodograms derived from the data. With
only 12 observations for each individual band, it is clear
that there is not enough data to accurately determine
the period within each single band. The shared-phase
(Nbase, Nband) = (1, 0) multiband approach, shown in the
lower-right panel, fits a single model to the full data and
clearly recovers the true frequency of 0.622 days. The
key result is that while methods based on the standard
periodogram are suitable for densely-sampled data, the
multiband periodogram is superior for sparsely-sampled
multiband observations.

This shared-phase (1, 0) model is only one of the pos-
sible multiband options, however: Figure 6 compares
multiband fits to this data for models with various
choices of (Nbase, Nband). We see here many of the char-
acteristics noted above for single-band models: as dis-
cussed in Section 4.2, increasing the number of Fourier
terms leads to power at multiples of the fundamental pe-
riod, and increased model complexity (roughly indexed
by the effective number of free parameters Meff ) tends
to increase the background level of the periodogram, ob-
scuring significant peaks. For this reason, models with
Nbase > Nband are the most promising: they allow a
flexible fit with minimal model complexity. Motivated
by this, in the next section we’ll apply the simplest of
this class of models, the (1, 0) shared-phase model, to
data from the Stripe 82 of the Sloan Digital Sky Survey.

6. APPLICATION TO STRIPE 82 RR LYRAE

Stripe 82 is a three hundred square degree equatorial
region of the sky which was repeatedly imaged through
multiple band-passes during phase II of the Sloan Digi-
tal Sky Survey (SDSS II, see Sesar et al. 2007). Here we
consider the SDSS II observations of 483 RR Lyrae stars
compiled and studied by S10, in which periods for these
stars were determined based on empirically-derived light
curve templates. Because the template-fitting method
is extremely computationally intensive, S10 first deter-
mined candidate periods by taking the top 5 results of
the Supersmoother (Reimann 1994) algorithm applied to
the g-band; template fits were then performed at each
candidate period and the period with the best template
fit was reported as the true period. In this section, we
make use of this dataset to quantitatively evaluate the
effectiveness of the multiband periodogram approach.

6.1. Densely-sampled Multiband Data

The full S10 RR Lyrae dataset consists of 483 objects
with an average of 55 observations in each of the five
SDSS ugriz bands spread over just under ten years. In
the upper panels of Figure 7 we show the observed data
for one of these objects, along with the periodogram de-
rived with the single-band supersmoother model5 and
the shared-phase (0, 1)-multiband model. Here we have
a case which is analogous to that shown for simulated

5 The supersmoother “periodogram” PSS is constructed from
the minimum sum of weighted model residuals r̄min in analogy
with Equation (8): PSS(ω) = 1 − r̄min(ω)/r̄0, where r̄0 is the
mean absolute residual around a constant model.



9

0.0 0.2 0.4 0.6 0.8 1.0
phase

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

m
ag

ni
tu

de

Folded Data, 5 bands per night (P=0.622 days)

u
g

r
i

z

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Period (days)

po
w

er
 +

 o
ffs

et

u

g

r

i

z

Standard Periodogram in Each Band

0.0 0.2 0.4 0.6 0.8 1.0
phase

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

m
ag

ni
tu

de

Folded Data, 1 band per night (P=0.622 days)

u
g

r
i

z
po

w
er

 +
 o

ffs
et

u

g

r

i

z

Standard Periodogram in Each Band

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Period (days)

po
w

er

Nbase=1, Nband=0
Multiband Periodogram

Fig. 5.— An illustration of the performance of the multiband periodogram. The upper panels show simulated ugriz observations of an
RR Lyrae light curve in which all 5 bands are observed each night. With 60 observations in each band, a periodogram computed from any
single band is sufficient to determine the true period of 0.622 days. The lower panels show the same data, except with only a single ugriz
band observed each night (i.e. 12 observations per band). In this case, no single band has enough information to detect the period. The
shared-phase multiband approach of Section 5 (lower-right panel) combines the information from all five bands, and results in a significant
detection of the true period. This indicates that while methods based on the standard periodogram are suitable for densely-sampled
multiband data, the multiband periodogram is superior for sparsely-sampled multiband observations.

data in the top panels of Figure 5: each band has enough
data to easily locate candidate peaks, the best of which
is selected via the S10 template-fitting procedure.

The lower panels of Figure 7 compare the S10 period
with the best periods obtained from the 1-band super-
smoother (lower-left) and from the shared-phase multi-
band model (lower-right). To guide the eye, the figure
includes indicators of the locations of beat aliases (dotted
lines) and first harmonic aliases (dashed lines) of the S10
period. Numerical results are summarized in the upper
rows of Table 1.

The best-fit supersmoother period matches the S10 pe-
riod in 87% of cases (421/483), while the best-fit multi-
band period matches the S10 period in 79% of cases
(382/483). The modes of failure are instructive: when
the supersmoother model misses the S10 period, it tends
to land on a harmonic alias (i.e. the dashed line). This
is due to the flexibility of supersmoother: a doubled pe-

riod spreads the points out, leading to fewer constraints
in each neighborhood and thus a smaller average resid-
ual around model. In other words, the SuperSmoother
tends to over-fit data which is sparsely-sampled. On the
other hand, when the multiband model misses the S10
period, it tends to land on a beat alias between the S10
period and the 1-day observing cadence (i.e. the dotted
lines). This is due to the fact that the single-frequency
periodic model is biased, and significantly under-fits the
data: it cannot distinguish residuals due to underfitting
from residuals due to window function effects.

In both models, the S10 period appears among the top
5 periods 99% of the time: 477/483 for supersmoother,
and 480/483 for multiband.6 This suggests that had S10

6 We might expect this correspondence to be 100% in the case of
the g-band supersmoother, which was the model used in the first
pass of the S10 computation. This discrepancy here is likely due to
the slightly different supersmoother implementations used in S10
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Fig. 6.— Comparison of the periodograms produced by various
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Nbase gives the number of Fourier terms in the base model, and
Nband gives the number of Fourier terms used to fit the residuals
around this model within each band. The characteristics discussed
with previous figures are also seen here: in particular, the level
of “background noise” in the periodogram grows with the model
complexity M ,

used the multiband Lomb-Scargle rather than the super-
smoother in the first pass for that study, the final results
presented there would be for the most part unchanged.

The results of this subsection show that the shared-
phase multiband approach is comparable to the single-
band supersmoother approach for densely-sampled
multiband data, although it has a tendency to get fooled
by structure in the survey window. Correction for this
based on the estimated window power may alleviate this
(see Roberts et al. (1987) for an example of such an ap-
proach) though in practice selecting from among the top
5 peaks appears to be sufficient.

6.2. Sparsely-sampled Multiband Data

Above we saw that the multiband model is compara-
ble to methods from the literature for densely-sampled
data. Where we expect the multiband approach to gain
an advantage is when the data are sparsely sampled, with
data through only a single band at each observation time.
To simulate this, we reduce the size of the Stripe 82 RR
Lyrae dataset by a factor of 5, keeping only a single band
of imaging each night: an average of 11 observations of
each object per band. This is much closer to the type
of data which will be available in future multiband time-
domain surveys.

The upper panels of Figure 8 show an example light
curve from this reduced dataset, along with the su-
persmoother and multiband periodograms derived from
this data. Analogously to the lower panels of Figure 5,
the single-band supersmoother model loses the true pe-
riod within the noise, while the shared-phase multiband
model still shows prominent signal near the S10 period.

The lower panels of Figure 8 show the relationship be-
tween the S10 periods (based on the full dataset) and
the periods derived with each model from this reduced
dataset, and these results are summarized in the lower
rows of Table 1. It is clear that the supersmoother model

and in this work. Objects showing this discrepancy are those with
very low signal-to-noise.

is simply over-fitting noise with this few data points: the
top period matches S10 in only 23% of cases (compared
to 87% with the full dataset), and the top 5 periods con-
tain the S10 period only 45% of the time. The failure
mode is much less predictable as well: rather than being
clustered near aliases, most of the period determinations
are scattered seemingly randomly around the parameter
space.

While the multiband method performed comparably to
the S10 method on dense data, it far outperforms S10 on
the sparse dataset. Even with an 80% reduction in the
number of observations, the multiband method matches
the S10 period 64% of the time (compared to 79% with
the full dataset), and the top 5 peaks contain the S10
period 94% of the time (compared to 99% with the full
dataset). This performance is due to the fact that the
multiband algorithm has relatively few parameters, but
is yet able to flexibly accommodate noisy data from mul-
tiple observing bands. In particular, this suggests that
with the multiterm periodogram, the S10 analysis could
have been done effectively with only a small fraction of
the available data. This bodes well for future surveys,
where data on variable stars will be much more sparsely
sampled.

6.3. Potential Improvements to the Multiband Method

A well-known (though often unrecognized) difficulty of
Lomb-Scargle-type periodograms on unevenly-sampled
data is that they do not measure the power of the
signal in question, but the power of the signal con-
volved with the observing with the survey window func-
tion. For regularly-sampled timeseries, this convolution
is the source of the perfect aliasing beyond the Nyquist
sampling limit; for non-regular sampling, this aliasing
generally happens to some degree at all frequencies! Be-
cause of this, even a signal with a single well-defined
period will result in a Lomb-Scargle periodogram with
multiple maxima at locations which depend on both the
underlying signal and the precise observing window.

The multiband periodogram, as a generalization of
Lomb-Scargle, shares this difficulty: it tends to respond
to frequency structure in the window function as well
as frequency structure in the data. This can be viewed
as a result of the very model simplicity which causes its
success in the case of sparse multiband data: it cannot
disentangle bias in the model from bias due to features
in the survey window.

This could potentially be accounted for by correcting
for the effect of the estimated window function; one po-
tential method for this involves estimating the decon-
volution of the window power and the observed power
(Roberts et al. 1987). It may also be possible to pro-
pose a multiband extension of, e.g., CARMA (Kelly et al.
2014) or another forward-modeling approach to detecting
periodicity.

Another potentially fruitful avenue of research which
we do not study here is the adjustment of the regular-
ization terms in the model, and the application of other
types of regularization to the higher-order periodogram.
In particular, L1 regularization (also known as Lasso re-
gression) could lead to interesting results: L1 regulariza-
tion is similar in spirit to the Tikhonov regularization
discussed in Section 4.3, but tends toward sparsity in
the model parameters (see, e.g. Ivezić et al. 2014, for
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Fig. 7.— Comparison of the Multiband algorithm and single-band supersmoother algorithm on 483 well-sampled RR Lyrae light curves
from Stripe 82. The upper panels show a representative lightcurve and periodogram fits, while the bottom panels compare the derived
periods to the template-based periods reported in S10. Shown for reference are the beat aliases (dotted lines) and the first harmonic alias
(dashed lines): numbers along the top and right edges of the panels indicate the number of points aligned with each trend. The single-
band supersmoother model tends to err toward harmonic aliases, while the multiband model tends to err toward beat frequency aliases.
Both methods find the correct period among the top 5 significant peaks around 99% of the time. This suggests that for densely-sampled
multiband surveys, the multiband periodogram will match the results of standard methods (but see Figure 8).

TABLE 1
Period Determination from dense and sparse data (483 total)

Data Method Match among top 5 Top peak matches Beat Aliases Harmonic Aliases

Dense data (Figure 7) g-band Supersmoother 477 (98.8%) 421 (87.2%) 31 34
Multi-band Periodogram 480 (99.4%) 382 (79.1%) 94 5

Sparse data (Figure 8) g-band Supersmoother 219 (45.3%) 113 (23.4%) 101 4
Multi-band Periodogram 449 (93.0%) 308 (63.8%) 136 7

a discussion). Such an approach could provide a useful
tradeoff between model complexity and bias in the case
of higher-order truncated Fourier models, though comes
at a higher computational cost.

Another potentially interesting extension of the multi-
band case would be to define and make use of physically-
motivated priors in the light-curve shape. This approach
could allow the model bias to be decreased without a
commensurate increase in model complexity, which is

what causes poor performance in the case of sparsely-
sampled noisy data. As an example of such a physically-
motivated prior, consider that the paths of RR Lyrae
stars through color-color and color-magnitude space are
constrained by known astrophysical processes in the
structure of the stars (e.g., see Fig. 5 in Szabó et al.
2014). Making use of this information could help break
degeneracies in period determination with higher-order
models.
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Fig. 8.— This figure repeats the experiment shown in Figure 7 (see caption there for description), but the data is artificially reduced to
only a single-band observation on each evening, a situation reflective of the observing cadence of future large-scale surveys. In this case, the
single-band SuperSmoother strategy used as a first pass in S10 fails: there is simply not enough data in each band to recover an accurate
period estimate. The correct period is among the top 5 candidates in fewer than 50% of cases. The shared-phase multiband approach
utilizes information from all five bands, and returns much more robust results: even with the greatly-reduced data, the true period is among
the top 5 candidates in 93% of cases. This suggests that for sparsely-sampled multiband survey data (such as that expected from LSST)
the multiband periodogram will produce superior results when compared to standard methods – see Figure 9.

7. PROSPECTS FOR MULTIBAND PERIODOGRAMS WITH
LSST

Previously, Oluseyi et al. (2012) evaluated the
prospects of period finding in early LSST data, and found
results which were not encouraging. Using the conserva-
tive criterion of a 2/3 majority among the top single-band
supersmoother periods in the g, r, and i bands, they
showed that, depending on spectral type, finding reliable
periods for the brightest (g ∼ 20) RR Lyrae stars will re-
quire several years of LSST data, while periods for some
of the faintest (g ∼ 25) stars will not be reliable with
even ten years of data!

One potential remedy is to move away from gen-
eral models like supersmoother and lomb-scargle to spe-
cific template-fitting methods such as those used in
S10. Indeed, such methods perform well even for
sparsely-sampled multiband data such as those from the
PanSTARRS survey; the primary drawback is that such

blind template fits are computationally extremely ex-
pensive: they involve nonlinear optimizations over each
of several hundred candidate templates at each of tens
of thousands of candidate frequencies (B. Sesar, pri-
vate communication). Thus the template-fitting method,
though it can produce accurate periods, in practice re-
quires several hours of CPU time for a well-sampled pe-
riod grid for a single source (compared to several seconds
for the multiband periodogram proposed here). Note
that several hours per object is orders-of-magnitude too
slow in the case of LSST; to estimate periods for a bil-
lion stars on a 1000-core machine in a year requires a
compute-time budget of only 30 seconds per light curve.

Because of the computational expense of the pure
template-fitting method, when working with SDSS II
data S10 performed a first-pass with a single-band su-
persmoother to establish candidate periods, which were
in turn evaluated with template-fitting approach. Here
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we show that such a hybrid strategy combining the multi-
band periodogram and the S10 template fits will be use-
ful for determining periodicity of variables in early LSST
data releases, greatly improving on the outlook presented
in Oluseyi et al. (2012).

We suggest the following procedure for determining pe-
riods in future multiband datasets:

1. As a first pass, find a set of candidate frequencies
using the multiband periodogram. This is a fast
linear optimization that can be straightforwardly
parallelized.

2. Within these candidate frequencies, use the more
costly template-fitting procedure to choose the op-
timal period from among the handful of candidates.

3. Compute a goodness-of-fit statistic for the best-fit
template to determine whether the fit is suitable;
if not, then apply the template-fitting procedure
across the full period range.

Here we briefly explore simulated LSST observations of
RR Lyrae stars in order to gauge the effectiveness of
the first step in this strategy; the effectiveness of the
template-fitting step will be explored further in future
work. Rather than doing the full analysis including the
final template fits, we will focus on the ability of the
multiband periodogram to quickly provide suitable can-
didate periods under the assumption that the S10 tem-
plate algorithm will then select or reject the optimal pe-
riod from this set.

7.1. LSST Simulations

We use a simulated LSST cadence (Delgado et al. 2006;
Ridgway et al. 2012; Jones et al. 2014) in 25 arbitrar-
ily chosen fields that are representative of the antici-
pated main survey temporal coverage. We simulate a
set of 50 RR Lyrae observations with the S10 templates,
with a range of apparent magnitudes between g = 20
and g = 24.5, corresponding to bright-to-faint range
of LSST main-survey observations, and with expected
photometric errors computed using eqs. 4–6 from Ivezić
et al. (2008). Given the capability of template-fitting to
choose among candidate periods, we use a more relaxed
period-matching criterion than in Oluseyi et al. (2012):
when evaluating the single-band supersmoother, we re-
quire that the true period is among the five periods de-
termined independently in the u, g, r, i, z bands; in the
multiband case we require that the true period is among
the top five peaks in the multiband periodogram.

Figure 9 shows the fraction of stars where this period
matching criterion is met as a function of g-band magni-
tude and subset of LSST data. The solid lines show the
multiband results; the dashed lines show the single-band
supersmoother results; and the shading helps guide the
eye for the sake of comparison. Because of our relaxed
matching criteria, even the single-band supersmoother
results here are much more optimistic than the Oluseyi
et al. (2012) results (compare to Figure 15 in that work):
the supersmoother result here can be considered repre-
sentative of a best-case scenario for ad hoc single-band
fits. Without fail, the multiband result exceeds this best-
case single-band result; the improvement is most appar-
ent for faint stars, where the greater model flexibility of
the supersmoother causes it to over-fit the noisy data.

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5
g-band magnitude

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 P

er
io

ds
 a

m
on

g 
To

p-
5

Multiband Improvement over SuperSmoother for LSST

5.0 years
2.0 years
1.0 years
0.5 years

multiband
supersmoother

Fig. 9.— Fraction of periods correctly determined for LSST RR
Lyrae as a function of the length of the observing season and the
mean g-band magnitude, for the multiband periodogram approach
(method of this work; solid lines) and single-band supersmoother
approach (method of Oluseyi et al. 2012, dashed lines). The multi-
band method is superior to the single-band supersmoother ap-
proach in all cases, and especially for the faintest objects.

The performance of the multiband periodogram points
to much more promising prospects for science with vari-
able stars than previously reported. In particular, even
with only six months of LSST data, we can expect to cor-
rectly identify the periods for over 60% of stars brighter
than g = 22; with the first two years of LSST obser-
vations, this increases to nearly 100%; with five years
of data, the multiband method identifies the correct pe-
riod for 100% of even the faintest stars. Part of this
improvement is due to the performance of the shared-
phase multiband model with noisy data, and part of this
improvement is due to the relaxed period-matching con-
straints enabled by the hybrid approach of periodogram-
based and template-based period determination.

8. DISCUSSION AND CONCLUSION

We have motivated and derived a multiband version of
the classic Lomb-Scargle method for detecting periodic-
ity in astronomical time-series. Experiments on several
hundred RR Lyrae stars from the SDSS Stripe 82 dataset
indicate that this method outperforms methods used pre-
viously in the literature, especially for sparsely-sampled
light curves with only single bands observed each night.
While there are potential areas of improvement involv-
ing corrections to window function artifacts and ac-
counting for physically-motivated priors, the straightfor-
ward multiband model outperforms previous ad hoc ap-
proaches to multiband data.

Looking forward to future variable star catalogs from
PanSTARRS, DES, and LSST, there are two important
constraints that any analysis method must meet: the
methods must be able to cope with heterogeneous and
noisy observations through multiple band-passes, and the
methods must be fast enough to be computable on mil-
lions or even billions of objects. The multiband method,
through its combination of flexibility and model simplic-
ity, meets the first constraint: as shown above, in the
case of sparsely-sampled noisy multiband data, it out-
performs previous approaches to period determination.
It also meets the second constraint: it requires the so-
lution of a simple linear model at each frequency, com-
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pared to a rank-based sliding-window model in the case
of supersmoother, a nonlinear optimization in the case
of template-fitting, and a Markov Chain Monte Carlo
analysis in the case of CARMA models. In our own
benchmarks, we found the multiband method to be sev-
eral times faster than the single-band supersmoother ap-
proach, and several orders of magnitude faster than the
template fitting approach.

The strengths and weaknesses of the multiband
method suggest a hybrid approach to finding periodic-
ity in sparsely-sampled multiband data: a first pass with
the fast multiband method, followed by a second pass us-
ing the more computationally intensive template-fitting
method to select among these candidate periods. Despite
pessimism in previous studies, our experiments with sim-
ulated LSST data indicate that such a hybrid approach
will successfully identify periods in the majority of RR
Lyrae stars brighter than g ∼ 22.5 in the first months of
the survey, and the majority of the faintest detected stars
with several years of data. This finding suggests that the

multiband periodogram could have an important role to
play in the analysis of variable stars in future multiband
surveys.

We have released a Python implementation of the
multiband periodogram on GitHub, along with Python
code to reproduce all results and figures in this work;
this is described in Appendix A. As we were finaliz-
ing this manuscript, we were made aware of a preprint
of an independent exploration of a similar approach to
multiband light curves (Long et al. 2014); we discuss the
similarities and differences between these two approaches
in Appendix B.
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APPENDIX

PYTHON IMPLEMENTATION OF MULTIBAND PERIODOGRAM

The algorithm outlined in this paper is available in gatspy, an open-source Python package for general astronom-
ical time-series analysis7 (Vanderplas 2015a). Along with the periodogram implementation, it also contains code to

7 http://github.com/astroml/gatspy/
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download all the data used in this work. Code to reproduce this paper, including all figures, is available in a separate
repository8.
gatspy is a pure-Python package written to be compatible with both Python 2 and Python 3, and performs fast

numerical computation through dependencies on numpy (van der Walt et al. 2011)9 and astroML (Vanderplas et al.
2012)10, which offer optimized implementations of numerical methods in Python.

The API for the module is largely influenced by that of the scikit-learn package (Pedregosa et al. 2011; Buitinck
et al. 2013)11, in which models are Python class objects which can be fit to data with the fit() method. Here is a
basic example of how you can use multiband LS to download the data used in this paper, fit a multiband model to
the data, and compute the power at a few periods:

from gatspy.periodic import LombScargleMultiband
import numpy as np

# Fetch the Sesar 2010 RR Lyrae data
from gatspy.datasets import fetch_rrlyrae
data = fetch_rrlyrae ()
t, mag , dmag , filts = data.get_lightcurve(data.ids [0])

# Construct the multiband model
model = LombScargleMultiband(Nterms_base =0, Nterms_band =1)
model.fit(t, mag , dmag , filts)

# Compute power at the following periods
periods = np.linspace (0.2, 1.4, 1000) # periods in days
power = model.periodogram(periods)

Other models are available as well. For example, here is how you can compute the periodogram under the super-
smoother model; this implementation of the supersmoother periodogram makes use of the supersmoother Python
package (Vanderplas 2015b).

from gatspy.periodic import SuperSmoother

# Construct the supersmoother model
model = SuperSmoother ()
gband = (filts == ’g’)
model.fit(t[gband], mag[gband], dmag[gband])

# Compute power at the given periods
power = model.periodogram(periods)

The models in the gatspy package contain many more methods, and much more functionality that what is shown
here. For updates, more examples, and more information, visit http://github.com/astroml/gatspy/.

COMPARISON WITH LONG (2014)

As we were finishing this study, we learned that another group had released a preprint independently addressing the
multiband periodogram case, and come up with a solution very similar to the one presented here (Long et al. 2014,
hereafter LCB14). They present two methods, the “Multiband Generalized Lomb-Scargle” (MGLS) which is effectively
identical to the (1, 0) multi-phase model here, and the “Penalized Generalized Lomb-Scargle” (PGLS), which is similar
in spirit to our (0, 1) shared-phase model.

In the PGLS model, they start with a multi-phase model, fitting independent N = 1 term fits to each band, and
apply a nonlinear regularization term which penalizes differences in the amplitude and phase. In terms of the formalism
used in this work, the PGLS model minimizes a regularized χ2 of the form

χ2
PGLS =

K∑
k=1

[
χ2
GLS(D(k)) + JA(A(k)) + Jφ(φ(k))

]
. (B1)

where K is the number of bands, χ2
GLS(D(k)) is the χ2 of the standard floating mean model on the single-band data

D(k), and JA and Jφ are regularization/penalty terms which are a function of the amplitude Ak and phase φ(k) of each

model. In terms of our linear model parameters θ(k), this amplitude and phase can be expressed:

A(k) =

√
(θ

(k)
1 )2 + (θ

(k)
2 )2

φ(k) = arctan(θ
(k)
2 /θ

(k)
1 ) (B2)

The selected form of these regularization terms penalizes deviations of the amplitude and phase from a common mean
between the bands; in this sense the PGLS model can be considered a conceptual mid-point between our shared-phase
and multi-phase models. Within the formalism proposed in the current work, such a mid-point may be alternatively

8 http://github.com/jakevdp/multiband LS/
9 http://www.numpy.org

10 http://www.astroml.org
11 http://scikit-learn.org
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attained by suitably increasing the regularization parameter λ used in our shared-phase model, though the precise
nature of the resulting regularization will differ.

Computationally, the PGLS model requires a nonlinear optimization at each frequency ω, and is thus much more
expensive than the straightforward linear optimization of our shared-phase model. For this reason, LCB14 proposes a
clever method by which nested models are used to reduce the number of nonlinear optimizations used: essentially, by
showing that the (linear) MGLS χ2 is a lower-bound of the (non-linear) PGLS χ2, it is possible to iteratively reduce
the number of PGLS computations required to minimize the χ2 among a grid of frequencies. Such an optimization
could also be applied in the case of our shared-phase model, but is not necessary here due to its already high speed.
Nevertheless, when applying the method to a very large number of light curves, as in e.g. LSST, such a computational
trick may prove very useful.

Given these important distinctions between the models proposed here and in LCB14, in future work we plan to do
a detailed comparison of the two approaches to multiband model regularization.


